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Degeneration and spectral dynamics in the rotating coordinate system of a 
large-scale vortex are investigated. 

The interaction between large-scale and fine-scale vortices reduces to adiabatic [i] 
for very large Reynolds numbers. As is known, after elimination of the adiabatic interac- 
tion from the dynamic equations in the "direct interaction" approximation, the Komogorov- 
Obukhov law is successfully obtained for spectra in the wave number inertial range. How~ 
ever, for moderate values of the Reynolds number the interaction between the large and small- 
scale vortices can be of different nature in principle. 

A large (permanent [2]) vortex produces a Coriolis force field in the domain of s)ace 
that it occupies, which is due to the rotational motion of the vortex. The comparatiw~ly 
slow motion of a large vortex affords time for the process of radiation of inertial waves 
to be realized by small-scale fluctuations in the Coriolis force field of this vortex [3, 
4]. Such inertial waves transfer the energy being emitted by their fluctuations to the vis- 
cous layers. These can be the "viscous superlayers" (free viscous layers that are the inter- 
facial boundaries between zones with intense and weak vorticity (see [5])) as well as zis- 
COUS layers on solid walls. It is known that the energy brought by the inertial waves to 
the viscous layers dissipates effectively therein; the papers [3-6] are devoted to an exami- 
nation of this process, say. It will later be shown that the wave mechanism of energy redis- 
tribution is capable of suppressing the cascade mechanism during a finite time. 

It turns out here that suppression will occur only upon satisfaction of the condi~;ion 
Re ~ 4"103 . We later call the Reynolds number satisfying this condition moderate. If the 
cascade mechanism is suppressed mainly by the wave mechanism, then in place of a power-law 
dependence in the law of fluctuation homogeneous turbulence energy attenuation an exponen- 
tial type attenuation law is realized. Then, when the inertial waves extract the energy 
principally in the viscous layers on fixed walls (such that the mean distances between these 
layers can be considered invariant), the index of exponential attenuation is independent of Re. 

i. SUPPRESSION OF CASCADE ENERGY TRANSFER BY WAVE ENERGY 

If there is a stable (metastable) rotation in a given space domain that can be charac- 
terized by a mean angular velocity ~, then the velocity (and pressure) field fluctuations 
will generate inertial waves in the Coriolis force field [3-6]. Wave generation in an in- 
compressible fluid is associated here with the fact that the rotation tends to suppress hy- 
drodynamic gradients along its direction and, therefore, the appearance of these gradients 
(inevitable in turbulent motion) involves the appearance of forces tending to their annihila- 
tion and the cancellation of these gradients also results in the disappearance of the ~orces 
they caused [7]. 

Part of the energy entrained by the inertial waves dissipates in the viscous layers 
and part, being reflected, returns to the volume occupied by the fluid [3-6]. Attenuation 
of the turbulent fluctuation kinetic energy as a result of its removal by inertial waw~s can 
be described by the equation [3] 

d~/dt = - - a  ~, (1) 
L 

where v is the viscosity, L is the mean distance between viscous layers, and a is a dimen-' 
sionless constant. If fl and L are considered constants, then there follows from (i) 
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~,--" exp a (vQ)'/______~ 2 t. ( 2 )  
L 

This attenuation can be taken into account in the equation for the spectral tensor in the 
"external friction" approximation [3, 8] 

where 

OE~j (k, t)/Ot = - -  2vkzEij  -~ Ti j  (k, t) - -  LEij,  

= a (~,Q)i/Z/L; 

( 3 )  

and Tij characterizes the spectral energy transfer due to cascade effects. The examination 

is conducted here in a reference system connected to the "rotating" large vortex in which 
the spectral dynamics being investigated further is formed. The "external friction" re- 
flects the interaction between inertial effects and viscous layers and is a phenomenological 
addition to the spectral equation [3, 8]. Since the inertial term in the Navier-Stokes 
equations is quadratic in the velocity, then for small Eij the functional Tij is a homoge- 

neous functional of order 3/2 of Eij. Let us make the substitution 

Ei~ (k, t) = EU (k, 0 exp -- ~t. 

Substituting (4) 
-2vk2Eij, we obtain 

into (3) and neglecting the direct action of viscosity, 

OE~j (k, o/at = T~] (k, t) exp - -  ~t12. 

(4) 

i.e., the term 

(5) 

Now, we make the replacement of the time 

Then it follows from (5) that 

2 ( i  - -  e x p  - -  ~,t12). (6) 

oE~/at = T,j (k: t'). 
(7) 

Therefore, the replacements (4) and (6) reduce the problem with "external friction" to 
an analogous problem without friction (the initial conditions are evidently identical). As 
t + ~ there follows t' + 2/~ from (6) such that the whole evolution described by the equation 
with "external friction" (3) is stacked in the interval (0, 2/~) of the evolution described 
by (7) (i.e., the equation without "external friction"). It is shown in [9] in a model ex- 
ample that there is a certain characteristic time of cascade process development: 

Taking the preceding into account, an estimate can be made of the condition under which the 
cascade process does not develop successfully (because of the action of the "external fric- 
tion'!). This condition has the form 

21~ ~ 5,2.2~l~. (8) 

Substituting its value for ~, we obtain 

Introducing the Reynolds number 

2Lla  (v~) ' /2 ~ 2=lQ. 

Re = ( L ) (Lfll2)I ~, 

(9)  

we rewrite condition (9) in the form 

Re <~, 66a 2. 

The approximate value for the dimensionless constant a can be taken from the experimen- 
tal data described in [3] where attenuation of turbulence was investigated behind a cascade 
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Fig. i. Turbulence attenua- 
tion generated by Taylor- 
Green vortex. 

in a rotating vessel. In this experiment a z 8 is obtained. Therefore the condition ~f cas- 
cade transfer suppression by wave has the form 

Re ~ 4 .10  3. (i0) 

2. TURBULENCE ATTENUATION BY PERMANENT VORTICES 

The mean parameters for the largest vortices (whose dimensions are comparable to ~he 
dimensions of the motion domain) vary slowly with time as compared with changes in ~2 12]. 
These vortices acquire ametastable state in attenuating turbulence because of the act!~on of 
inertial forces. These forces (we provisionally denote them by f) are equilibrated by vis- 
cous friction on the walls (boundaries) of the motion domain. Hence, for metastable (perma- 
nent) vortices the equation 

~AVp = [ (ii) 

can be written, where Vp is the velocity field of the permanent vortices. We do not kr~ow 
the explicit form. However, it is clear that f has inertial origination and therefore de- 
pends weakly on the viscosity (~). Consequently, approximately 

~p-~w-~, (12) 

where Qp is the effective angular velocity of the fluid rotation in the permanent vortices. 

One of the simplest numerical models of homogeneous turbulence is the Taylor-Greet vor- 
tex [9]. A result obtained by using this model (Sec. i) has already been utilized above. 
A flow of the form 

u~ (x, O) = cos xl smx~ cos xa, ~ (x, O) = - -  sin xl cos x~ cos x3, u8 (x, O) = 0 ' 

in all space is selected therein as the initial condition to the Navier-Stokes equatiors. 
The periodicity property is invariant and can be constrained to an examination of the notion 
in a cube with edge (2~) under periodic boundary conditions. For t > 0 the velocity field 
becomes three-dimensional, where the vortex lines are extended. Results of a numerical com- 
putation of such a problem by using a spectral method are presented in [9]. For the dimen- 
sionless time t > 5 the rate of fluctuation energy dissipation e = du2/dt decreases mono- 
tonically (the growth of s for t < 5 is related to buildup of the cascade). If it is ss- 
sumed that turbulence attenuation is determined by the wave mechanism described in the pre- 
ceding section, then the attenuation law e will also be exponential with the same exponent 
as for u 2. Data taken from [9] but processed with (2) taken into account (a semilogarith- 
mic scale is selected for this) are presented in the figure. It is seen that the attenua- 
tion law is actually approximated well by an exponential. Data for v -I (dimensionless) = 
i00 are presented in the figure. There are also data for v-l = i00, 200, 300, 400 in [7]. 
Attenuation for them is also approximated well by an exponential, where the attenuation in- 
dex i is practically independent of v -I (see the figure). The independence of I from 9-i 
is in conformity with (12) since we obtain by the substitution of the value of ~p in place 

of ~ in the representation for % =a(v~)i/2/L and taking account of (12) that % should be 
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independent of v. It is known that the large vortices introduce the main contribution to 
the energy. In what way is dissipation from fine-scale fluctuations capable of substantial 
influence on dissipation as a whole under conditions of a suppressed cascade process? The 
fact is that under such conditions the rotational transfer of fine-scale pulsations by a 
large vortex velocity field is evidently not simply an adiabatic [i] but a governing factor 
in the mechanism of energy removal by inertial waves since their generation is impossible 
without it. And, therefore, the energetic relation (energy transmission) between large- and 
fine-scale vortices is not interrupted but changes its nature: it becomes inertial-wave 
From cascade. 

It should be noted that in full-scale experiments the data on turbulence attenuation 
behind gratings are approximated quite satisfactorily by power-law dependences for Re < 104 
(see [i0, ii], say). The question of how much turbulence generated by the Taylor-Green vor- 
tex [9] differs from grating turbulence is not clear. Data of a grating experiment in [12] 
together with a power-law approximation allow a good approximation by the exponential depen- 
dence also. Theexponent i~this dependence is practically independent of Re (compare with 
the above elucidation) although the experiments were performed for Re < 2"103. Perhaps the 
applicability or nonapplicability of the reasoning expressed here to grating turbulence de- 
pends on channel geometry (i.e.,on the ratio of the grating step to the transverse channel 
dimension)? 
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